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Abstract: Ammonia nitrogen is an important factor in aquaculture; it can poison aquatic nerves and cause economic loss. If
the ammonia nitrogen content is too high, if can lead to serious losses in the fish population within a short period of time.
However, ammonia nitrogen prediction 18 inaccurate due to the influence of many factors such as dissolved oxygen, water
temperature, and pH. Thus, this paper presents an improved method for amrmonia nitrogen prediction in aquaculture ponds.
Principle component analysis is utilized to select the key factors from meteorological factors and water quality factors; wavelet
threshold de-neising is used to process data; a least squares support vector regression (LSSVR) prediction model is established,
and the key parameters are optimized by the adaptive mutation particle swarm optimization algorithm to obtain the optimal
least squares support vector regression forecasting model.
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ponds is influenced by other factors (e.g., water

1 Introduction

Agquaculture ponds are a major part of freshwater

aquaculture in China, accounting for 43.94% of
freshwater aquaculture. Ammonia nitrogen, which is one
of the key factors in aquaculture ponds, plays an
important role during the process of | aquatic growth.
Excessive ammonia nitrogen even in a short time will
affect aquatic development by poisoning its nerve center,
even causing death. This seriously affects aquatic
production, resulting in huge economic losses (Zhang and
Zhu, 2012). As a result, accurate prediction of ammonia
nitrogen in aquaculture ponds is extremely urgent.

The content of ammonia nitrogen in aguaculture
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temperature, dissolved oxygen, and pH). These factors
influence each other and are unmstable. Thus, it is
particularly important to filter out the key factors by
optimizing the method. However, it is difficult to
determine the representative variables that are
independent of cach other because of the limited
knowledge regarding ammonia nitrogen in aquaculture
ponds. Principal component analysis (PCA) is proposed
for feature extraction and data dimension reduction
(Pearson, 1901). It is effective to select the most
representative key factors by using PCA because it
considers the relationship among different factors (Singh
et al., 2011, Combes and Azema, 2013). Thus, the key
factors that affect the change in ammonia nitrogen were
identified by adopting PCA in this paper.

The reality and accuracy of original data are
interpreted as a condition necessary for further research
(Singh et al., 2010). Nevertheless, the data arising from

the monitoring stations and experiment might be polluted
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by noise signals owing to systematic and random errors.
This noisy data often made prediction relatively difficult
{Najah et al., 2012). Therefore, it is necessary to remove
such noise from the original data. Wavelet theory has
been widely applied to signal processing since it was first
proposed in the early 1980s by Grossman because of its
ability of distinguish noise and useful signals (Grossmann
and Morlet, 1984, Kmen and Aslan, 2013). Wavelet
analysis is considered a useful tool to analyse detailed
temporal patterns of water quality signals over different
temporal scales (Liu et al., 2013). Therefore, we adopied
wavelet analysis to de-noise and -exiract features of the
original ammonia nitrogen data to improve forecast
accuracy in this study.

There are many methods to forecast water quality,
such as regression models, artificial neural network
{ANN), and support vector machine (Maier et al., 2010,
Singh et al.,, 2011, and Tan et al., 2012). The regression
model is the most commonly used due to the rapidity and
simplicity of prediction; however, it is difficult to
guarantee the accuracy of prediction {(Grbié et al., 2013,
Wu et al,, 2013). The ANN has been apphed to many
aspects but is not suitable for small sample data (Maier et
al. 2010, Almonacid et al., 2013, Rouhani and Ravasan,
2013). The support vecior machine is considered a better
alternative to ANN due to its advantages in solving small
samples, nonlinearity, high dimensions, local minimum
points and other practical issues (Tan et al., 2012, Cortes
and Vapnik, 1995, Dibike et al., 2001, and Chen and Li,
2014). The prediction model based on support vector
machine was proved useful for predicting droughts and
estimating  uncertainty  associated with  drought
predictions (Ganguli and Reddy, 2013). An unscented
Kalman filter-based state-space vector regression
approach was utilized to predict short-term wind speed
and has been proved to have much better performance
than ANN (Chen and Yu, 2014). An ASVM has proved
to be a promising method for case adaptation in CBD
systems {Qi et al, 2015). Thus, the support vector
machine method was applied to the prediction of small
sample data.

Least squares support vector regression (LSSVR)
simplified the model standard SVR to a great extent by

applying linear least squares criteria to the loss function
instead of a traditional quadratic programming method,
which greatly improves the caleulation speed and
accuracy (Suykens et al., 2002). LSSVR has been
successfully applied to many prediction fields. Lin et al.
attempted to use an LSSVR techniqﬁe with monthly
fuzzy weighted values to forecast revenue in uncertain
cconomic conditions successfully (Lin et al, 2013).
Utterance modelling with i-vectors, which was
successfully apphed to speaker recognition, has been used
in conjunction with a WCCN and LSSVR to address
speaker age estimation {Bahari et al., 2014). A Pl-adaptive
LSSVR controller was applied to a nonlinear inverted
pendulum in the presence of disturbance (Naghash-
Almasi and Khooban, 2016). Thus, the LSSVR was used
to predict changes in ammonia nitrogen in this paper.
However, LSSVR performance heavily depends on

the choice of kernel parameters and the regularization

_parameter, which are necessary to define the optimization

problem and the final LSSVR model (Liu et al., 2013, Xje
et al., 2013). Therefore, it is necessary to optimize these
parameters. Particle Swarm Optimization (PSO) has been
successfully applied to optimize the parameters of
LSSVR. A PSO-SVM based on the association rules
method was presented to diagnose erythemato-squamous
diseases and was shown to be promising compared to the
previously reported results (Abdi et al, 2013). Liu
presented the dissolved oxygen prediction model based
on LSSVR optimized by improved PSO and acquired a
satisfactory forecasting result (Liu et al., 2013). Geng
improved the forecasting precision of port throughput by
applying the proposed simulated annealing particle
swarm optimization (SAPSQ) algorithm to the robust
v-support vector regression model (RSVR) (Geng et al,,
2015). The PSO was exploited in the SRITCSD method
to serve as a multiclassifier for image texture features;
meanwhile, the PSO, which can improve the performance
of the SRITCSD method, was employed to optimize the
LSSVR (Chang et al., 2016). However, PSO has many
drawbacks, including premature convergence. The
adaptive mutation particle swarm optimization algorithm
(AMPSO) was proposed to solve this problem (Lu et al.,
2005). Thus, the AMPSO was applied to optimize the
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parameters of the LSSVR in this study. The prediction
model was tested and compared with other algorithms
using the ammonia nitrogen data from a silver cod
forming pond. The results show that the accuracy of
prediction and the capability of generalization are greatly
improved by our proposed approach.

This paper is organized as follows: Section 2 reports
the construction of a hybrid forecasting model based on
the wavelet analysis approach, least squares support
vector regression and principal component analysis.
Section 3 describes an application of the hybrid
forecasting model. Finally, conclusions and future works

are presented in Section 4.
2 Materials and methods

2.1 Data acquisition

The data used in this study were produced from the
Tianxiang aquatic products Co., Ltd. in Ninghe County,
China.

Tianjin City, The experimental pond was
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Figure 1

2.2 Principal component analysis

Principal component analysis (PCA) was proposed for
feature extraction and data dimension reduction based on
multi-dimensional orthogonal linear transformation of
statistical features (Pearson, 1901, Hérdle and Simar,
2007). The core idea of PCA is to form several
comprehensive indicators {principal component) from a
linear combination of primitive variables by studying the
original variation of the correlation matrix or covariance
matrix of the internal structure of the relationship. The
similarity between the variables should be taken into
account in the first step. The correlation coefficient was

applied to measure the similarity between variables; the

approximately one acre, and the average water level was
approximately 3 M. Three aerators were installed in the
experimental pond. One point was chosen — where the
distance from the forming pond was one meter and the
depth was one meter — to collect the data (see Figure 1).
A water-quality index, which was composed of ammonia
nitrogen (AN}, water temperature (WT), dissolved
oxygen (DO) and pH, and a weather index, which was
composed of rainfall (Ra), wind speed (WS), direction of
wind (DW), solar radiation (SR), air temperature (AT),
air humidity (AH) and atmospheric pressure (AP), were
included in the data. The ammonia nitrogen was
measured by a DZ-A type aquaculture water quality
analyser every 4 hours starting from 0:00. Dissolved
oxygen, water temperature and pH were detected by a
HQ40d dual input multi-parameter digital analyser every
4 hours starting from 0:00. The weather index acquired
from the small weather station was installed next to the

silver cod forming pond.
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formula was as follows Equation (1):

I _ —_
-~ 2;21 (x!.j. X Hxy —x,)
-3

il [Z; (xy —fj)z Z;(xﬂ; —X:)Z}
0:1,2,3,...,711) (1)

where, xy is the variable j in data I; x; is the variable & in

]

data i; X, is the average of variable j; g 18 the average
of variable k; m 1s the total number of variables; 7 is the
total number of each variable, and ry is the correlation
coefficient between variable j and variable 4.

Contribution rate and cumulative contribution rate are
used to evaluate the principal component as follows

Equations (2) and (3):
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T. = (i=1,2,..,m) )
ﬁz
/1

(i=12,..,m) (3)

where, J; and A; are the matrix eigenvalue; 7; is the
contribution rate of i th principal component, and #; is the
cumulative contribution rate of the first i principal
component.

The load matrix of the principal component is used to

screen key influencing factors as follows Equation (4):

Cr=oy A )
where, #; is the correlation degree of principal
components between the i th variable and the j th
variable.

2.3 Wavelet analysis

Wavelet transform, which treats both the continuous
and the discrete-time cases, has proven to be extremely
valuable in signal processing (Daubechies, 1990, Rioul
and Vetterli 1991). Unlike the Fourier transform, which
can be utilized for a multi-scale analysis of a signal
through dilation and translation, it can effectively extract
the time-frequency features of a signal (Kisi and Cimen,
2011). For a continuous input signal, the time and scale
parameters can be continuous, leading to the Continuous
Wavelet Transform (Grossmann et al.,, 1989). Wavelet
transform can be defined for discrete-time signals,
leading to a Discrete Wavelet Transform (Daubechies,
1988, Rioul and Flandrin, 1992). The Discrete Wavelet
Transform requires fess computation time and is simpler
to develop than the Continuous Wavelet Transform
(Smith et al, 1998). Thus, the Discrete Wavelet
Transform was applied to de-noise and extract features of
the original ammonia nitrogen data.

For a discrete time series f{f), the Discrete Wavelet
Transform can be defined as the integration of a signal
multiplied by a scaled and translated wavelet function at
different time ¢, written as Equation (5):

W, 1.k = O (@ &)

The original signal f{¥) can be obtained by taking the
inverse wavelet transform using the

Equation (6):

following

FO= W f G0, (Odjdk ©)
where, j, & are integer numbers; and ¥, (¢) is the

wavelet basis function (Mallat 1989 Daubechies and Heil
1992), written as Equation (7):

] ,
Y, (0)=229Q27 k) (N
2.4 Least squares Support Vector Regression

Giving a training set {x,,»,}Y, least squares support

vector regression (Suykens et al. 2002) was defined as

follows Equation (8):

mmJ (w, e):kw Wty — Z” e (8)

where, w is the normal vector of the hyperplane; ¥ < R*

is the regularization parameter controlling model

complexity =~ and the  overfitting  phenomenon,

e=ler,ea...,epl’, is the learning residual vector; @(-) is the
typical nonlinear mapping from the input space into the
so-called feature space; and b is the bias.

Iniroduce the Lagrangian as Equation (9):
N
Liw,b,e0) =J ,(w,e)+ X0, (v, ~w o(x) ~b—e) (9)

where, o; are the Lagrangian multipliers. The conditions
for optimality are Equation (10):

ol ol

—=0->w=> ao(x

= Z (%)
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RO o
a——O%a = ye

a : = Ve

oL r

3\—:0—>yi—w o(x)-b—e =0

da,

One obtains a set of linear equations after eliminating

w and e in Equation (11)

VEHET e

where, 1=[1,1s,...,13]", d=[d1,ds,....d]", K, =k(x,x,)=

, o, Li=j
a(x,)" a(x;)+— is a Kernel function, 8, =2 J_ .
v 0,0+ j
Hence, the regression model is found by solving
Equation (9). The resulting least squares support vector

regression then becomes Equation (12):
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2.5  AMPSO-based optimization of the LSSVR
model

Particle swarm optimization algorithm (Eberhart et al.,
2001, Trelea, 2003) which is carried out to find the
optimal solution by evaluating the position, velocity and
fitness of each particle — 18 a swarm intelligence
optimization algorithm. The particle velocity and position
update equations for the 7 th particle and 4 th dimension
can be described as follows:

Vi =whyven(By — X) von(By -Xy) (13)

X5 = X5 +avit (14)

where, w 1s the nertia weight; & is the iteration number;

c) is the cognition leamning factor; c; denotes the social

learming factor; ry and r, are two independent uniformly

distributed random variables with range [0,1], Pl; denotes

the best previous position encountered by the ith particle,

and ﬂgd denotes the global best position of a particle; thus,

X;; and V,; are the position and velocity of the particle,
respectively.

An adaptive mutation particle swarm optimization
algorithm is proposed in order to overcome the premature
convergence of particle swarm optimization algorithm by
increasing a random mutation operator (Lu et al., 2005).
The particle swarm optimization algorithm can be
continued in the case of premature convergence by
initializing P;d with a certain probability in Equations
(15)-(17).

fon =2 f (15)
4
max
f=max{1, 1 fi= e |} (16)
2 _ C f;gjﬂuvng 17
- ;[——f an

where, » is the particle swarm size; f; is the fitmess of
particle #; fi, is the average fitness of practices; o is the
variance of population fitness, and f is the normalized
scaling factor for limiting the size of o

Piy is initialized by the following Equation (18)
(Chen et al., 2006, Deyi et. al., 2011):

where, Py 18 the maximum variation probability; P 18
the minimum variation probability; P; is the group global
optimization in k iteration, and or is the variance of
population fitness in & iteration. Increasing random
perturbation was adopted to mutate Pgd as follows
Equation (19):

Ply= Pea(1+0.57) (19)
where, # is a random variable subject to Guass (0, 1).
The process of optimizing the LSSVR parameters with
AMPSO is presented in Figure 2, which can be described

as follows:

Start

——>| Initial particle swarm parameters l

] Caleulate the fitness of each particle ‘

v

Cenfirm the individual extreme

and group extremum

v

‘ Update velecity and position of particle !

v

I Caleulate the probability of mutation

R<P; where belongs to
random [0, 1]

Yes
¥

Mutate particle

v

Calculate the fitness of particles,
and update the partic.le optim.a{ ¢
position and group optimal position

the minimum error or
maximurn nuaber of
iterations is reached

Yes

A4

| Tterative output optimal value L

End
Figure 2 Process of optimizing the LSSVR parameters with
AMPSO

Stepl: Initial particle swarm parameters: inertia

factor, acceleration constant, maximum number of

iterations and the minimum allowable error of the
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algorithm. And initiate the velocity and position of the
particles randomly.

Step2: Calculate the fitness of each particle according
to the following formula Equation (20):

itness = 20

where, n is the particle swarm size; y; is the real value,
and 7, is the forecast value.

Step3: Confirm' the individual extreme and group
extremum according to the fitness of each particle.

Step4: Update the velocity and position of the particle
by using Equation (12}, (13).

Step5: Calculate the probability of mutation by using
Equation (14)-(17).

Step6: Mutate the particle by using Equation (18)
while »<P, where r belongs to random [0, 1].

Step7: Calculate the fitness of particles, and update
the particle optimal position and group optimal position.

Step8: Iteratively output the optimal value until the
minimum error or maximum munber of iterations is
reached. Otherwise, go to step 4.

2.6 The overall structure of the proposed hybrid
algorithm

The process for content prediction of ammonia
nitrogen in aquaculture using optimized least square
support vector regression 1s described as follows:

Stepl: Collect the data used in this study, and then
dispose error data and missing data.

Step2: Filter the key factors for the content prediction
of ammonia nitrogen in aquaculture using principal
component analysis.

Step3: De-noise and extract features of the key
factors data and ammonia nitrogen using wavelet
analysis.

Step4: Normalize the data and select the training
sample and testing sample.

Step5: Build the model using the AMPSG-LSSVR
algorithm.

Step6: Output the results, and evaluate the model.

3 Resuilts and discussions

31 Principal component analysis for factors

dimension reduction

The data which includes ammonia nitrogen (AN},
water temperature (WT), dissolved oxygen (DO), pH,
rainfall (Ra), wind speed (WS), dirsction of wind (DW),
solar radiation (SR), air temperature (AT), air humidity
(AH) and atmospheric pressure {AP) were acquired once
every hour starting from 0:00 during the time period
between October 2th and October 10th, 2015. Rainfall
was deleted from the data set because there is no rain
from October 2th to October 10th. The PCA was chosen
to screen the key factors influencing the change of
ammonia nitrogen according to the following steps:

Stepl: Normalize the original data by the following
Equations (21) and (22):

0, 8,=0
1 #n —
S, = >(x, —x,) (22)
/ n—1<="

where, x; is the variable 7 in data i z is the average of

variable j; m is the total number of variables; » is the total
number of each variable; S; is the standard deviation of
variable j, and xy is the standard data,

Step2: Find the similarity between every pair of
variables in the data set using the formula (1), and then
list the correlation coefficient matrix. _

Step3: Calculate the characteristic value and
characteristic vector of the correlation coefficient matrix;
the result is shown in Table 1.

Step4: Calculate the contribution rate and cumulative
contribution rate using formula (2) and (3); the result is .

shown in Table 1.

Table I Factor the characteristic value and contribution rate

of aquacualture
Principal Characteristic Contribution Cumulative contribution

fact value rate, % rate, %

1 2.901% C2602 29.02

2 2.4923 24.92 53.94

3 1.4244 14,24 68.18
4 1.1512 11.51 79.69

5 0.8762 8.76 Bg.45

6 0.4517 4.52 92.97

7 0.3002 . 3.00 3597 .
8 0.2195 2.20 98.17

9 0.1352 1.35 99.52"
10 0.0475 0.48 10.00
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5 factors were chosen as the key factors influencing
the change in ammonia nitrogen because the cumulative
contribution rate of the first five factors is greater than
%5%, which we can see from Table 1.

Step5: Calculate the load matrix of the principal fact
using Equation (4); the result is listed in Table 2.

Table 2 The load matrix of the principal fact
Fact Principal Principal Principal Principal Principal
fact 1 fact 2 fact 3 fact 4 fact 5
AN —0.8414 ~0.2664 —0.1803 0.1522 —0.0085
WT 0.7663 0.3250 —0.4508 ~0.1490 0.1281
DO —0.2576 0.6340 0.6548 —-0.079¢ 0.0285
pH 0.1163 0.7607 0.5137 -0.1765 0.0112
WS —0.7012 0.4886 -0.2305 —0.1454 0.0698
DW 0.1236 0.0250 0.1326 0.6828 0.7005
SR -0.0334 0.5090 -0.2765 0.5948 —0.4280
AT 0.6368 0.6176 -0.3589 —0.0611 0.0795
AH 0.5473 —0.6535 0.2634 -£.2054 0.0354
AP 0.5364 ~0.1682 0.3807 0.4258 —0.4153

From Table 2, we can see that the correlation
coefficient of AN and WT on the first factor is larger than
that of other factors; the contribution of pH to the second
factor is the largest, the contribution of DO to the third
factor 18 the largest; the contribution of DW to the fourth
and fifth factors is the largest. Thus, the AN, WT, pH,
DO and DW were chosen as the principal component
index. This also corresponds to the selection of the key
factors influencing the change in ammeonia nitrogen.

3.2 Wavelet analysis for data de-noising

The Discrete Wavelet Transform was applied to
de-noise and extract features of the key factor data
selected in section 3.1 and ammonia nitrogen as
according to the following steps:

Stepl: Decompose the original signal into 3 scales
with the appropriate wavelet basis function illustrated in
Figure 3.

Step2: Process the wavelet coefficients with the
appropriate wavelet thresholding function.

Step3: Obtain the de-noising signal by reconstructing

the processed wavelet coefficients with soft thresholding.

]

vﬁ—{ CAl }— FCDl J

b h J
CAa2 CcD2

Figure 3 Tree structure of wavelet decomposition

It 1s difficult to find an ideal wavelet in signal analysis,
80 a compromise is made between performance and
complexity. It is desirable to use few wavelet basis
functions and wavelet thresholding functions from
different families for the performance evaluation and
selecting the wavelet that gives the best performance. The
root mean square error (RMSE) and the signal-to-noise

ratio (SNR) were used to measure performance. The

RMSE and SNR can be illustrated as follows
Equations (23) and (24):
1 p 2
RMSE = \/;Z[f(n)—f(n)]‘ (23)
SNR =10log,,, Z”f ) (24)

3 fm - fmf

where, f{rn) is the original signal, and f‘ (n) is the signal
after wavelet threshold de-noising.

The wavelet basis functions haar, dmey, dbN (N=2,
3, ..., 10), symN (N=1, 2, ... ,10), coifN (N=1, 2, ..., 5)
and wavelet thresholding function rigrsure were applied
to process the ammonia nitrogen; the result is shown in
Table 3.

Table3 The RMSE and SNR of ammonia nitrogen with

different wavelet basis functions

Wavelet basis function type SNR RMSE
Haar 23.3144 0.0386
dmey 23.0417 0.0605

db2 23.5433 0.0571
db3 23.8969 0.0548
db4 23.8567 0.0551
dbs 24.1539 0.0532
dbé 24.2507 0.0526
db7 22.9939 0.0608
db8 24,1971 0.053
db9 23.3543 0.0584
dbl0 23.984 0.0543
syml 233144 0.0586
sym2 23.5433 0.0571
sym3 23.896% 0.0548
symd 23.7257 0.0559
sym3 23.0542 0.0604
symé 24,6358 0.0503
sym7 23.7485 0.0558
sym8 23.8564 0.0551
sym9 23.8572 0.0551
sym10 23.5851 0.0568
coifl 23.4919 0.0574
coif2 23.7919 0.0555
coif3 23.1602 0.0597
coifd 23.8815 0.0549
coifs 23.0811 0.0602
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The wavelet basis function sym6 was selected as the
best wavelet basis function due to the minimum RMSE
{0.0503) and the maximum SNR (24.6398). The result of
ammonia nitrogen noise reduction is presented in Figure
4. From Figure 4, it can be seen that the change curve of
ammonia nitrogen becomes smooth, and the influence of

noise and clutter on the ammonia nitrogen was

elimimnated.
- 14 R L
o — The original data of ammonia nitrogen
=g 12
&g
Eg
55
2]
EE
= I L I 1 1
0 20 40 60 80 100 120
Data numbers
= L1
= & The denoise data of ammeonia nitrogen
g % 1.0
Eoa 09
£ E 08
= E
=

Q 20 40 60 8¢ 100 120
' Data numbers

Figure 4 Result of ammonia nitrogen

The wavelet basis functions of water temperature
(WT), dissolved oxygen (DO), pH, and direction of wind
(DW) were chosen for the same method. Finally, the best
wavelet basis function and wavelet thresholding function

of each factor were selected as shown in Table 4.

Table 4 Best wavelet basis function of each factor

Factor Wavelet basis function type SNR RMSE
AN symé 24.6398 0.0503
WT coifl 29.9880 0.5977
Do syms 27.3846 0.4019
pH sym3 38.3841 0.1017
Dw dbé 47.4163 11.037¢

3.3 Resnlts evaluation
* The proposed hybrid algorithm was implemented in
the Matlab R2012a programming language. We obtained

the optimal parameters v and ¢ for the prediction model

I
1

—-—— Real values

—
EN)
T

bt
oo

The content of ammonia nitrogen
-
=

of ammonia nitrogen based on the AMPSO algorithm.,
The initial parameters of AMPSO were given as follows:
the cognition learning factor ¢=1.5, the social learning
factor ¢;=1.7, the population size of swarm sizepop=30,
the iteration number maxgen=300, the inertia weight
wmax=1.2 and wmin=0.8; the fitness accuracy of the
normalized samples are equal to 0.002. The changing
trend of the fitness value is illuminated in Figure 5. From
Figure 5, we can see that the fitness value tends to
stabilize quickly; the AMPSO converges to the best
solution quickly and is more appropriate for seeking the
unknown parameters of the LSSVR. The optimal
combination parameters were obtained, namely, y=1000,
¢=2.9144.

0114 r
0.112
0.110
0,108

0.106

The fitness value

0.104

0.102

0.100 1 1 1 1 ) ;
0 50 © 100 150 200 250 300

The number of interations

Figure 5 Trend of the fitness value

The optimal combination parameters were adopted to
train the ammonia nitrogen. prediction model. The
training result of the prediction model was shown in
Figure 6. From Figure 6, the real values and the predicted
training values with AMPSO_LSSVR were not quite
different. The test sample set was put into the trained
model to predict the change in ammonia nitrogen. The
ammonia nitrogen content prediction result is given in
Figure 7. Trom Figure 7, it is shown that the ammonia
nitrogen content prediction result is broadly in line with

the real values.

~———&— Training predicted valnues with AMPSO-LSSVR

Data numbers

Figure 6 Trained result of the prediction model
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Figure 7 Ammonia nitrogen content prediction result

In addition, the standard least square support vector
regression (LSSVR) was compared with the optimized
least square support vector regression. The results of
different methods are illustrated in Figure 8. The results
of the optimized least square support vector regression
are closer to the real wvalues. Thus, the accuracy of

ammonia nitrogen prediction in the pond aquaculture was

—
(o=l
1

mproved.

The absolute errors of the standard least square
support vector regression and the optimized least square
support vector regression are representéd in Figure 9. The
absolute errors of the optimized least square support are
smaller than those of the standard least square support

vector regression.

—-£3— Real values
———&—— Predicted values with AMPSO-LSSVR
—F— Predicted values with LSSVR

The content of anunonia nitrogen
=
T

12:00 146:00 20:00

Time

Figure 8 Predicted results of different methods
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Figure 9 AR of different predicted results with different methods

Different standard statistical performance evaluation
criteria, such as root mean square error (RMSE), the
mean absolute percentage error (MAPE), the mean
absolute eror (MAT), the mean relative ervor (MRE), and
the Nash—Sutcliffe efficiency coefficient (NSC), were
used to evaluate the performance of various models. The
RMSE, MAE and MRE were used to assess the
prediction capability of the model proposed in this paper.
The MAE and MRE can be illustrated as follows
Equations (25) and (26):

1 & .
MAE=—>"|y,~ 7| (25)
N3
1 &y, -7
MRE = =321
v @)

where, y; is the real value; J; is the predicted value, and
N is the number of samples.

The RMSE, MAE and MRE of different methods are
listed in Table 5. The obtained results indicate thai the
optimized least square support vector regression is far

superior to the standard least square support vector
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regression. The prediction RMSE of optimized least
square support vector regression is reduced by 40.15%
compared to that of standard least square support vector
regression. The prediction MAE of optimized least square
support vector regression is reduced by 41.82% compared
to that of standard least square support vector regression.
The prediction MRE of optimized least square support
vector regression is reduced by 42.29% compared to that

of standard least square support vector regression.

Table 5 RMSR and MAE of different methods

Method RMSE MAE MRE
Optimized least square support vector regression (10945 00,0903 0.0887
Standard least square support vector regression  0.1579  0.1552  0.1537

The hybrid model proposed in this study is capable of
searching for the parameter values of the LSSVR and
RBF kemel function. The of this study

demonstrates that the prediction of ammonia nitrogen

result

content 18 effective and feasibie.
4 (Conclusions

This paper proposed a hybrid forecasting model that
combined principle component analysis, wavelet analysis,
and least squares support vector regression and adaptive
mutation particle swarm optimization algorithm. The
results clearly show that compared with the standard least
square support vector regression (LSSVR), the proposed
hybrid method of optimized L.SSVR has better prediction
performance, as measured by RMSE. Further, the
optirmized LSSVR can effectively consider many
dimensions and nonlinearity, non-stationary and finite
samples and is a reliable forecasting tool for predicting
ammonia nitrogen time series in modern intensive
aquaculture.

There is room for further study and development.
First, the change in ammonia nitrogen in the aquaculture
pond will be different during different farming seasons
and different growth periods. In future work, we plan to
research the prediction of ammonia nitrogen in
aquaculture ponds over longer time periods, taking into
consideration different farming seasons and different
growth periods to control the ammonia nitrogen in
aquaculture ponds. Second, other optimization search

algorithms, like genetic algorithm (GA) and ant colony

optimization (ACO), can be compared with the adaptive
particle algorithm
{AMPSO). These are all valuable problems for future

research.

mutation swarm  optimization
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